That Sounds Right: Auditory Self-Supervision for Dynamic Robot Manipulation
Learning to produce contact-rich, dynamic behaviors from raw sensory data has been a longstanding challenge in robotics. Prominent approaches primarily focus on using visual or tactile sensing, where unfortunately one fails to capture high-frequency interaction, while the other can be too delicate for large-scale data collection. In this work, we propose a data-centric approach to dynamic manipulation that uses an often ignored source of information: sound. We first collect a dataset of 25k interaction-sound pairs across five dynamic tasks using commodity contact microphones. Then, given this data, we leverage self-supervised learning to accelerate behavior prediction from sound. Our experiments indicate that this self-supervised 'pretraining' is crucial to achieving high performance, with a 34.5 learning and a 54.3 when asked to generate desired sound profiles, online rollouts of our models on a UR10 robot can produce dynamic behavior that achieves an average of 11.5 improvement over supervised learning on audio similarity metrics.
READ FULL TEXT