TextProposals: a Text-specific Selective Search Algorithm for Word Spotting in the Wild

04/10/2016
by   Lluis Gomez-Bigorda, et al.
0

Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way. Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10 percent f-score the best-performing method in the last ICDAR Robust Reading Competition. Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset