Text2Scene: Generating Abstract Scenes from Textual Descriptions
In this paper, we propose an end-to-end model that learns to interpret natural language describing a scene to generate an abstract pictorial representation. The pictorial representations generated by our model comprise the spatial distribution and attributes of the objects in the described scene. Our model uses a sequence-to-sequence network with a double attentive mechanism and introduces a regularization strategy. These scene representations can be sampled from our model similarly as in language-generation models. We show that the proposed model, initially designed to handle the generation of cartoon-like pictorial representations in the Abstract Scenes Dataset, can also handle, under minimal modifications, the generation of semantic layouts corresponding to real images in the COCO dataset. Human evaluations using a visual entailment task show that pictorial representations generated with our full model can entail at least one out of three input visual descriptions 94 and at least two out of three 62
READ FULL TEXT