Text to artistic image generation
Painting is one of the ways for people to express their ideas, but what if people with disabilities in hands want to paint? To tackle this challenge, we create an end-to-end solution that can generate artistic images from text descriptions. However, due to the lack of datasets with paired text description and artistic images, it is hard to directly train an algorithm which can create art based on text input. To address this issue, we split our task into three steps: (1) Generate a realistic image from a text description by using Dynamic Memory Generative Adversarial Network (arXiv:1904.01310), (2) Classify the image as a genre that exists in the WikiArt dataset using Resnet (arXiv: 1512.03385), (3) Select a style that is compatible with the genre and transfer it to the generated image by using neural artistic stylization network (arXiv:1705.06830).
READ FULL TEXT