Text Coherence Analysis Based on Deep Neural Network

10/21/2017
by   Baiyun Cui, et al.
0

In this paper, we propose a novel deep coherence model (DCM) using a convolutional neural network architecture to capture the text coherence. The text coherence problem is investigated with a new perspective of learning sentence distributional representation and text coherence modeling simultaneously. In particular, the model captures the interactions between sentences by computing the similarities of their distributional representations. Further, it can be easily trained in an end-to-end fashion. The proposed model is evaluated on a standard Sentence Ordering task. The experimental results demonstrate its effectiveness and promise in coherence assessment showing a significant improvement over the state-of-the-art by a wide margin.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset