Text Classification Components for Detecting Descriptions and Names of CAD models

04/04/2019 ∙ by Thomas Köllmer, et al. ∙ 0

We apply text analysis approaches for a specialized search engine for 3D CAD models and associated products. The main goals are to distinguish between actual product descriptions and other text on a website, as well as to decide whether a given text is or contains a product name. For this we use paragraph vectors for text classification, a character-level long short-term memory network (LSTM) for a single word classification and an LSTM tagger based on word embeddings for detecting product names within sentences. Despite the need to collect bigger datasets in our specific problem domain, the first results are promising and partially fit for production use.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.