Testing Product Distributions: A Closer Look

12/29/2020
by   Arnab Bhattacharyya, et al.
0

We study the problems of identity and closeness testing of n-dimensional product distributions. Prior works by Canonne, Diakonikolas, Kane and Stewart (COLT 2017) and Daskalakis and Pan (COLT 2017) have established tight sample complexity bounds for non-tolerant testing over a binary alphabet: given two product distributions P and Q over a binary alphabet, distinguish between the cases P = Q and d_TV(P, Q) > ϵ. We build on this prior work to give a more comprehensive map of the complexity of testing of product distributions by investigating tolerant testing with respect to several natural distance measures and over an arbitrary alphabet. Our study gives a fine-grained understanding of how the sample complexity of tolerant testing varies with the distance measures for product distributions. In addition, we also extend one of our upper bounds on product distributions to bounded-degree Bayes nets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset