Ternary primitive LCD BCH codes

by   Xinmei Huang, et al.
Nanjing University of Aeronautics and Astronautics
Nanjing University of Posts and Telecommunications

Absolute coset leaders were first proposed by the authors which have advantages in constructing binary LCD BCH codes. As a continue work, in this paper we focus on ternary linear codes. Firstly, we find the largest, second largest, and third largest absolute coset leaders of ternary primitive BCH codes. Secondly, we present three classes of ternary primitive BCH codes and determine their weight distributions. Finally, we obtain some LCD BCH codes and calculate some weight distributions. However, the calculation of weight distributions of two of these codes is equivalent to that of Kloosterman sums.


page 1

page 2

page 3

page 4


Weight distributions and weight hierarchies of two classes of binary linear codes

First, we present a formula for computing the weight hierarchies of line...

Quaternary linear codes and related binary subfield codes

In this paper, we mainly study quaternary linear codes and their binary ...

A general family of Plotkin-optimal two-weight codes over ℤ_4

We obtained all possible parameters of Plotkin-optimal two-Lee weight pr...

Weight distributions of six families of 3-weight binary linear codes

First, we correct a previous erroneous result about the exponential sum ...

Dimension of nonbinary antiprimitive BCH codes

Bose-Chaudhuri-Hocquenghem (BCH) codes have been widely employed in sate...

Weight distributions of two classes of linear codes based on Gaussian period and Weil sums

In this paper, based on the theory of defining sets, two classes of at m...

Millions of Perrin pseudoprimes including a few giants

The calculation of many and large Perrin pseudoprimes is a challenge. Th...

Please sign up or login with your details

Forgot password? Click here to reset