Tensor-SIFT based Earth Mover's Distance for Contour Tracking
Contour tracking in adverse environments is a challenging problem due to cluttered background, illumination variation, occlusion, and noise, among others. This paper presents a robust contour tracking method by contributing to some of the key issues involved, including (a) a region functional formulation and its optimization; (b) design of a robust and effective feature; and (c) development of an integrated tracking algorithm. First, we formulate a region functional based on robust Earth Mover's distance (EMD) with kernel density for distribution modeling, and propose a two-phase method for its optimization. In the first phase, letting the candidate contour be fixed, we express EMD as the transportation problem and solve it by the simplex algorithm. Next, using the theory of shape derivative, we make a perturbation analysis of the contour around the best solution to the transportation problem. This leads to a partial differential equation (PDE) that governs the contour evolution. Second, we design a novel and effective feature for tracking applications. We propose a dimensionality reduction method by tensor decomposition, achieving a low-dimensional description of SIFT features called Tensor-SIFT for characterizing local image region properties. Applicable to both color and gray-level images, Tensor-SIFT is very distinctive, insensitive to illumination changes, and noise. Finally, we develop an integrated algorithm that combines various techniques of the simplex algorithm, narrow-band level set and fast marching algorithms. Particularly, we introduce an inter-frame initialization method and a stopping criterion for the termination of PDE iteration. Experiments in challenging image sequences show that the proposed work has promising performance.
READ FULL TEXT