Tensor BM-Decomposition for Compression and Analysis of Spatio-Temporal Third-order Data
Given tensors 𝒜, ℬ, 𝒞 of size m × 1 × n, m × p × 1, and 1× p × n, respectively, their Bhattacharya-Mesner (BM) product will result in a third order tensor of dimension m × p × n and BM-rank of 1 (Mesner and Bhattacharya, 1990). Thus, if a third-order tensor can be written as a sum of a small number of such BM-rank 1 terms, this BM-decomposition (BMD) offers an implicitly compressed representation of the tensor. Therefore, in this paper, we give a generative model which illustrates that spatio-temporal video data can be expected to have low BM-rank. Then, we discuss non-uniqueness properties of the BMD and give an improved bound on the BM-rank of a third-order tensor. We present and study properties of an iterative algorithm for computing an approximate BMD, including convergence behavior and appropriate choices for starting guesses that allow for the decomposition of our spatial-temporal data into stationary and non-stationary components. Several numerical experiments show the impressive ability of our BMD algorithm to extract important temporal information from video data while simultaneously compressing the data. In particular, we compare our approach with dynamic mode decomposition (DMD): first, we show how the matrix-based DMD can be reinterpreted in tensor BMP form, then we explain why the low BM-rank decomposition can produce results with superior compression properties while simultaneously providing better separation of stationary and non-stationary features in the data. We conclude with a comparison of our low BM-rank decomposition to two other tensor decompositions, CP and the t-SVDM.
READ FULL TEXT