Temporal network analysis: Introduction, methods and detailed tutorial with R
Learning involves relations, interactions and connections between learners, teachers and the world at large. Such interactions are essentially temporal and unfold in time. Yet, researchers have rarely combined the two aspects (the temporal and relational aspects) in an analytics framework. Temporal networks allow modeling of the temporal learning processes i.e., the emergence and flow of activities, communities, and social processes through fine-grained dynamic analysis. This can provide insights into phenomena like knowledge co-construction, information flow, and relationship building. This chapter introduces the basic concepts of temporal networks, their types and techniques. A detailed guide of temporal network analysis is introduced in this chapter, that starts with building the network, visualization, mathematical analysis on the node and graph level. The analysis is performed with a real-world dataset. The discussion chapter offers some extra resources for interested users who want to expand their knowledge of the technique.
READ FULL TEXT