Temporal Model Adaptation for Person Re-Identification

07/25/2016 ∙ by Niki Martinel, et al. ∙ 0

Person re-identification is an open and challenging problem in computer vision. Majority of the efforts have been spent either to design the best feature representation or to learn the optimal matching metric. Most approaches have neglected the problem of adapting the selected features or the learned model over time. To address such a problem, we propose a temporal model adaptation scheme with human in the loop. We first introduce a similarity-dissimilarity learning method which can be trained in an incremental fashion by means of a stochastic alternating directions methods of multipliers optimization procedure. Then, to achieve temporal adaptation with limited human effort, we exploit a graph-based approach to present the user only the most informative probe-gallery matches that should be used to update the model. Results on three datasets have shown that our approach performs on par or even better than state-of-the-art approaches while reducing the manual pairwise labeling effort by about 80



There are no comments yet.


page 9

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.