DeepAI AI Chat
Log In Sign Up

Temporal Hockey Action Recognition via Pose and Optical Flows

by   Zixi Cai, et al.

Recognizing actions in ice hockey using computer vision poses challenges due to bulky equipment and inadequate image quality. A novel two-stream framework has been designed to improve action recognition accuracy for hockey using three main components. First, pose is estimated via the Part Affinity Fields model to extract meaningful cues from the player. Second, optical flow (using LiteFlowNet) is used to extract temporal features. Third, pose and optical flow streams are fused and passed to fully-connected layers to estimate the hockey player's action. A novel publicly available dataset named HARPET (Hockey Action Recognition Pose Estimation, Temporal) was created, composed of sequences of annotated actions and pose of hockey players including their hockey sticks as an extension of human body pose. Three contributions are recognized. (1) The novel two-stream architecture achieves 85 the inclusion of optical flows increasing accuracy by about 10 localization of hand-held objects (e.g., hockey sticks) as part of pose increases accuracy by about 13 general dataset, MSCOCO, is successfully used for transfer learning to a smaller and more specific dataset, HARPET, achieving a PCKh of 87


page 4

page 6

page 7


On the Integration of Optical Flow and Action Recognition

Most of the top performing action recognition methods use optical flow a...

Im2Flow: Motion Hallucination from Static Images for Action Recognition

Existing methods to recognize actions in static images take the images a...

Investigation on Combining 3D Convolution of Image Data and Optical Flow to Generate Temporal Action Proposals

In this paper, a novel two-stream architecture for the task of temporal ...

Cross-Enhancement Transform Two-Stream 3D ConvNets for Pedestrian Action Recognition of Autonomous Vehicles

Action recognition is an important research topic in machine vision. It ...

Human Action Recognition System using Good Features and Multilayer Perceptron Network

Human action recognition involves the characterization of human actions ...

Triple-stream Deep Metric Learning of Great Ape Behavioural Actions

We propose the first metric learning system for the recognition of great...