Temporal Hierarchical Clustering

07/31/2017
by   Tamal K. Dey, et al.
0

We study hierarchical clusterings of metric spaces that change over time. This is a natural geometric primitive for the analysis of dynamic data sets. Specifically, we introduce and study the problem of finding a temporally coherent sequence of hierarchical clusterings from a sequence of unlabeled point sets. We encode the clustering objective by embedding each point set into an ultrametric space, which naturally induces a hierarchical clustering of the set of points. We enforce temporal coherence among the embeddings by finding correspondences between successive pairs of ultrametric spaces which exhibit small distortion in the Gromov-Hausdorff sense. We present both upper and lower bounds on the approximability of the resulting optimization problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset