Template Matching Advances and Applications in Image Analysis

10/23/2016
by   Nazanin Sadat Hashemi, et al.
0

In most computer vision and image analysis problems, it is necessary to define a similarity measure between two or more different objects or images. Template matching is a classic and fundamental method used to score similarities between objects using certain mathematical algorithms. In this paper, we reviewed the basic concept of matching, as well as advances in template matching and applications such as invariant features or novel applications in medical image analysis. Additionally, deformable models and templates originating from classic template matching were discussed. These models have broad applications in image registration, and they are a fundamental aspect of novel machine vision or deep learning algorithms, such as convolutional neural networks (CNN), which perform shift and scale invariant functions followed by classification. In general, although template matching methods have restrictions which limit their application, they are recommended for use with other object recognition methods as pre- or post-processing steps. Combining a template matching technique such as normalized cross-correlation or dice coefficient with a robust decision-making algorithm yields a significant improvement in the accuracy rate for object detection and recognition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro