TEE-based Selective Testing of Local Workers in Federated Learning Systems
This paper considers a federated learning system composed of a central coordinating server and multiple distributed local workers, all having access to trusted execution environments (TEEs). In order to ensure that the untrusted workers correctly perform local learning, we propose a new TEE-based approach that also combines techniques from applied cryptography, smart contract and game theory. Theoretical analysis and implementation-based evaluations show that, the proposed approach is secure, efficient and practical.
READ FULL TEXT