Technical notes: Syntax-aware Representation Learning With Pointer Networks

03/17/2019
by   Matteo Grella, et al.
0

This is a work-in-progress report, which aims to share preliminary results of a novel sequence-to-sequence schema for dependency parsing that relies on a combination of a BiLSTM and two Pointer Networks (Vinyals et al., 2015), in which the final softmax function has been replaced with the logistic regression. The two pointer networks co-operate to develop a latent syntactic knowledge, by learning the lexical properties of "selection" and the lexical properties of "selectability", respectively. At the moment and without fine-tuning, the parser implementation gets a UAS of 93.14 Penn-treebank (Marcus et al., 1993) annotated with Stanford Dependencies: 2-3 under the SOTA but yet attractive as a baseline of the approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro