Taxi Demand-Supply Forecasting: Impact of Spatial Partitioning on the Performance of Neural Networks

12/10/2018
by   Neema Davis, et al.
0

In this paper, we investigate the significance of choosing an appropriate tessellation strategy for a spatio-temporal taxi demand-supply modeling framework. Our study compares (i) the variable-sized polygon based Voronoi tessellation, and (ii) the fixed-sized grid based Geohash tessellation, using taxi demand-supply GPS data for the cities of Bengaluru, India and New York, USA. Long Short-Term Memory (LSTM) networks are used for modeling and incorporating information from spatial neighbors into the model. We find that the LSTM model based on input features extracted from a variable-sized polygon tessellation yields superior performance over the LSTM model based on fixed-sized grid tessellation. Our study highlights the need to explore multiple spatial partitioning techniques for improving the prediction performance in neural network models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset