Task-similarity Aware Meta-learning through Nonparametric Kernel Regression

06/12/2020
by   Arun Venkitaraman, et al.
0

Meta-learning refers to the process of abstracting a learning rule for a class of tasks through a meta-parameter that captures the inductive bias for the class. The metaparameter is used to achieve a fast adaptation to unseen tasks from the class, given a few training samples. While meta-learning implicitly assumes the tasks as being similar, it is generally unclear how this similarity could be quantified. Further, many of the popular meta-learning approaches do not actively use such a task-similarity in solving for the tasks. In this paper, we propose the task-similarity aware nonparameteric meta-learning algorithm that explicitly employs similarity/dissimilarity between tasks using nonparametric kernel regression. Our approach models the task-specific parameters to lie in a reproducing kernel Hilbert space, wherein the kernel function captures the similarity across tasks. The proposed algorithm iteratively learns a meta-parameter which is used to assign a task-specific descriptor for every task. The task descriptors are then used to quantify the similarity through the kernel function. We show how our approach generalizes the popular meta-learning approaches of model-agnostic meta-learning (MAML) and Meta-stochastic gradient descent (Meta-SGD) approaches. Numerical experiments with regression tasks show that our algorithm performs well even in the presence of outlier or dissimilar tasks, validating the proposed approach

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset