Taming denumerable Markov decision processes with decisiveness

08/24/2020 ∙ by Nathalie Bertrand, et al. ∙ 0

Decisiveness has proven to be an elegant concept for denumerable Markov chains: it is general enough to encompass several natural classes of denumerable Markov chains, and is a sufficient condition for simple qualitative and approximate quantitative model checking algorithms to exist. In this paper, we explore how to extend the notion of decisiveness to Markov decision processes. Compared to Markov chains, the extra non-determinism can be resolved in an adversarial or cooperative way, yielding two natural notions of decisiveness. We then explore whether these notions yield model checking procedures concerning the infimum and supremum probabilities of reachability properties.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.