Take More Positives: A Contrastive Learning Framework for Unsupervised Person Re-Identification

01/12/2021
by   Xuanyu He, et al.
11

Exploring the relationship between examples without manual annotations is a core problem in the field of unsupervised person re-identification (re-ID). In the unsupervised scenario, no ground truth is provided for bringing instances of the same identity closer and spreading samples of different identities apart. In this paper, we introduce a contrastive learning framework for unsupervised person re-ID, which we call Take More Positives (TMP). In an iterative manner, TMP generates pseudo-labels by clustering samples, and updates itself with such pseudo-labels and the proposed contrastive loss. By considering more positive examples, the framework of TMP outperforms the state-of-the-art methods for unsupervised person re-ID. On the Market-1501 benchmark, TMP achieves 88.3 Our code will be made publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro