T-Projection: High Quality Annotation Projection for Sequence Labeling Tasks
In the absence of readily available labeled data for a given task and language, annotation projection has been proposed as one of the possible strategies to automatically generate annotated data which may then be used to train supervised systems. Annotation projection has often been formulated as the task of projecting, on parallel corpora, some labels from a source into a target language. In this paper we present T-Projection, a new approach for annotation projection that leverages large pretrained text2text language models and state-of-the-art machine translation technology. T-Projection decomposes the label projection task into two subtasks: (i) The candidate generation step, in which a set of projection candidates using a multilingual T5 model is generated and, (ii) the candidate selection step, in which the candidates are ranked based on translation probabilities. We evaluate our method in three downstream tasks and five different languages. Our results show that T-projection improves the average F1 score of previous methods by more than 8 points.
READ FULL TEXT