Systems Architecture for Quantum Random Access Memory

06/05/2023
by   Shifan Xu, et al.
0

Operating on the principles of quantum mechanics, quantum algorithms hold the promise for solving problems that are beyond the reach of the best-available classical algorithms. An integral part of realizing such speedup is the implementation of quantum queries, which read data into forms that quantum computers can process. Quantum random access memory (QRAM) is a promising architecture for realizing quantum queries. However, implementing QRAM in practice poses significant challenges, including query latency, memory capacity and fault-tolerance. In this paper, we propose the first end-to-end system architecture for QRAM. First, we introduce a novel QRAM that hybridizes two existing implementations and achieves asymptotically superior scaling in space (qubit number) and time (circuit depth). Like in classical virtual memory, our construction enables queries to a virtual address space larger than what is actually available in hardware. Second, we present a compilation framework to synthesize, map, and schedule QRAM circuits on realistic hardware. For the first time, we demonstrate how to embed large-scale QRAM on a 2D Euclidean space, such as a grid layout, with minimal routing overhead. Third, we show how to leverage the intrinsic biased-noise resilience of the proposed QRAM for implementation on either Noisy Intermediate-Scale Quantum (NISQ) or Fault-Tolerant Quantum Computing (FTQC) hardware. Finally, we validate these results numerically via both classical simulation and quantum hardware experimentation. Our novel Feynman-path-based simulator allows for efficient simulation of noisy QRAM circuits at a larger scale than previously possible. Collectively, our results outline the set of software and hardware controls needed to implement practical QRAM.

READ FULL TEXT

page 1

page 12

research
12/16/2020

Variational Quantum Algorithms

Applications such as simulating large quantum systems or solving large-s...
research
04/30/2022

A Scalable 5,6-Qubit Grover's Quantum Search Algorithm

Recent studies have been spurred on by the promise of advanced quantum c...
research
12/10/2017

Simulation of Quantum Circuits via Stabilizer Frames

Generic quantum-circuit simulation appears intractable for conventional ...
research
01/31/2022

A lower bound on the space overhead of fault-tolerant quantum computation

The threshold theorem is a fundamental result in the theory of fault-tol...
research
11/22/2018

On the Influence of Initial Qubit Placement During NISQ Circuit Compilation

Noisy Intermediate-Scale Quantum (NISQ) machines are not fault-tolerant,...
research
06/03/2023

Simulating Noisy Quantum Circuits for Cryptographic Algorithms

The emergence of noisy intermediate-scale quantum (NISQ) computers has i...
research
07/30/2020

Optimal Layout Synthesis for Quantum Computing

Recent years have witnessed the fast development of quantum computing. R...

Please sign up or login with your details

Forgot password? Click here to reset