System-reliability based multi-ensemble of GAN and one-class joint Gaussian distributions for unsupervised real-time structural health monitoring

02/01/2021
by   Mohammad Hesam Soleimani-Babakamali, et al.
3

Unsupervised health monitoring has gained much attention in the last decade as the most practical real-time structural health monitoring (SHM) approach. Among the proposed unsupervised techniques in the literature, there are still obstacles to robust and real-time health monitoring. These barriers include loss of information from dimensionality reduction in feature extraction steps, case-dependency of those steps, lack of a dynamic clustering, and detection results' sensitivity to user-defined parameters. This study introduces an unsupervised real-time SHM method with a mixture of low- and high-dimensional features without a case-dependent extraction scheme. Both features are used to train multi-ensembles of Generative Adversarial Networks (GAN) and one-class joint Gaussian distribution models (1-CG). A novelty detection system of limit-state functions based on GAN and 1-CG models' detection scores is constructed. The Resistance of those limit-state functions (detection thresholds) is tuned to user-defined parameters with the GAN-generated data objects by employing the Monte Carlo histogram sampling through a reliability-based analysis. The tuning makes the method robust to user-defined parameters, which is crucial as there is no rule for selecting those parameters in a real-time SHM. The proposed novelty detection framework is applied to two standard SHM datasets to illustrate its generalizability: Yellow Frame (twenty damage classes) and Z24 Bridge (fifteen damage classes). All different damage categories are identified with low sensitivity to the initial choice of user-defined parameters with both introduced dynamic and static baseline approaches with few or no false alarms.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 5

page 16

page 21

page 22

12/07/2021

Generative Adversarial Networks for Data Generation in Structural Health Monitoring

Structural Health Monitoring (SHM) has been continuously benefiting from...
02/28/2018

Novelty Detection with GAN

The ability of a classifier to recognize unknown inputs is important for...
12/07/2021

Generative Adversarial Networks for Labeled Data Creation for Structural Monitoring and Damage Detection

There has been a drastic progression in the field of Data Science in the...
02/06/2020

Damage-sensitive and domain-invariant feature extraction for vehicle-vibration-based bridge health monitoring

We introduce a physics-guided signal processing approach to extract a da...
06/27/2020

Generative Damage Learning for Concrete Aging Detection using Auto-flight Images

In order to health monitoring the state of large scale infrastructures, ...
01/27/2021

Statistical guided-waves-based SHM via stochastic non-parametric time series models

Damage detection in active-sensing, guided-waves-based Structural Health...
08/10/2020

Ride-hailing Impacts on Transit Ridership: Chicago Case Study

Existing literature on the relationship between ride-hailing (RH) and tr...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.