Synonymous Generalization in Sequence-to-Sequence Recurrent Networks

03/14/2020
by   Ning Shi, et al.
0

When learning a language, people can quickly expand their understanding of the unknown content by using compositional skills, such as from two words "go" and "fast" to a new phrase "go fast." In recent work of Lake and Baroni (2017), modern Sequence-to-Sequence(se12seq) Recurrent Neural Networks (RNNs) can make powerful zero-shot generalizations in specifically controlled experiments. However, there is a missing regarding the property of such strong generalization and its precise requirements. This paper explores this positive result in detail and defines this pattern as the synonymous generalization, an ability to recognize an unknown sequence by decomposing the difference between it and a known sequence as corresponding existing synonyms. To better investigate it, I introduce a new environment called Colorful Extended Cleanup World (CECW), which consists of complex commands paired with logical expressions. While demonstrating that sequential RNNs can perform synonymous generalizations on foreign commands, I conclude their prerequisites for success. I also propose a data augmentation method, which is successfully verified on the Geoquery (GEO) dataset, as a novel application of synonymous generalization for real cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset