Synchronization under Dynamic Constraints

10/04/2019
by   Petra Wolf, et al.
0

Imagine an assembly line where a box with a lid and liquid in it enters in some unknown orientation. The box should leave the line with the open lid facing upwards with the liquid still in it. To save costs there are no complex sensors or image recognition software available on the assembly line, so a reset sequence needs to be computed. But how can the dependencies of the deforming impact of a transformation of the box, such as 'do not tilt the box over when the lid is open' or 'open the lid again each time it gets closed' be modeled? We present three attempts to model constraints of these kinds on the order in which the states of an automaton are transitioned by a synchronizing word. The first two concepts relate the last visits of states and form constraints on which states still need to be reached, whereas the third concept concerns the first visits of states and forms constraints on which states might still be reached. We examine the computational complexity of different variants of the problem, whether an automaton can be synchronized with a word that respects the constraints defined in the respective concept, and obtain nearly a full classification. While most of the problems are PSPACE-complete we also observe NP-complete variants and variants solvable in polynomial time. We will also observe a drop of the complexity if we track the orders of states on several paths simultaneously instead of tracking the set of active states. Further, we give upper bounds on the length of a synchronizing word depending on the size of the input relation and show that the Cerny conjecture holds for partial weakly acyclic automata.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset