Symblicit Exploration and Elimination for Probabilistic Model Checking
Binary decision diagrams can compactly represent vast sets of states, mitigating the state space explosion problem in model checking. Probabilistic systems, however, require multi-terminal diagrams storing rational numbers. They are inefficient for models with many distinct probabilities and for iterative numeric algorithms like value iteration. In this paper, we present a new "symblicit" approach to checking Markov chains and related probabilistic models: We first generate a decision diagram that symbolically collects all reachable states and their predecessors. We then concretise states one-by-one into an explicit partial state space representation. Whenever all predecessors of a state have been concretised, we eliminate it from the explicit state space in a way that preserves all relevant probabilities and rewards. We thus keep few explicit states in memory at any time. Experiments show that very large models can be model-checked in this way with very low memory consumption.
READ FULL TEXT