SwGridNet: A Deep Convolutional Neural Network based on Grid Topology for Image Classification

09/22/2017
by   Atsushi Takeda, et al.
0

Deep convolutional neural networks (CNNs) achieve remarkable performance on image classification tasks. Recent studies, however, have demonstrated that generalization abilities are more important than the depth of neural networks for improving performance on image classification tasks. Herein, a new neural network called SwGridNet is proposed. A SwGridNet includes many convolutional processing units which connect mutually as a grid network where many processing paths exist between input and output. A SwGridNet has high generalization capability because the multipath architecture has the same effect of ensemble learning. As described in this paper, details of the SwGridNet network architecture are presented. Experimentally obtained results presented in this paper show that SwGridNets respectively achieve test error rates of 2.95 15.67 that the SwGridNet performance approximates that of state-of-the-art deep CNNs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro