Swarms on Continuous Data
While being it extremely important, many Exploratory Data Analysis (EDA) systems have the inhability to perform classification and visualization in a continuous basis or to self-organize new data-items into the older ones (evenmore into new labels if necessary), which can be crucial in KDD - Knowledge Discovery, Retrieval and Data Mining Systems (interactive and online forms of Web Applications are just one example). This disadvantge is also present in more recent approaches using Self-Organizing Maps. On the present work, and exploiting past sucesses in recently proposed Stigmergic Ant Systems a robust online classifier is presented, which produces class decisions on a continuous stream data, allowing for continuous mappings. Results show that increasingly better results are achieved, as demonstraded by other authors in different areas. KEYWORDS: Swarm Intelligence, Ant Systems, Stigmergy, Data-Mining, Exploratory Data Analysis, Image Retrieval, Continuous Classification.
READ FULL TEXT