Survey data integration for regression analysis using model calibration

07/14/2021
by   Hang J. Kim, et al.
0

We consider regression analysis in the context of data integration. To combine partial information from external sources, we employ the idea of model calibration which introduces a "working" reduced model based on the observed covariates. The working reduced model is not necessarily correctly specified but can be a useful device to incorporate the partial information from the external data. The actual implementation is based on a novel application of the empirical likelihood method. The proposed method is particularly attractive for combining information from several sources with different missing patterns. The proposed method is applied to a real data example combining survey data from Korean National Health and Nutrition Examination Survey and big data from National Health Insurance Sharing Service in Korea.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset