Suppressing Mislabeled Data via Grouping and Self-Attention

by   Xiaojiang Peng, et al.

Deep networks achieve excellent results on large-scale clean data but degrade significantly when learning from noisy labels. To suppressing the impact of mislabeled data, this paper proposes a conceptually simple yet efficient training block, termed as Attentive Feature Mixup (AFM), which allows paying more attention to clean samples and less to mislabeled ones via sample interactions in small groups. Specifically, this plug-and-play AFM first leverages a group-to-attend module to construct groups and assign attention weights for group-wise samples, and then uses a mixup module with the attention weights to interpolate massive noisy-suppressed samples. The AFM has several appealing benefits for noise-robust deep learning. (i) It does not rely on any assumptions and extra clean subset. (ii) With massive interpolations, the ratio of useless samples is reduced dramatically compared to the original noisy ratio. (iii) It jointly optimizes the interpolation weights with classifiers, suppressing the influence of mislabeled data via low attention weights. (iv) It partially inherits the vicinal risk minimization of mixup to alleviate over-fitting while improves it by sampling fewer feature-target vectors around mislabeled data from the mixup vicinal distribution. Extensive experiments demonstrate that AFM yields state-of-the-art results on two challenging real-world noisy datasets: Food101N and Clothing1M. The code will be available at


Trustable Co-label Learning from Multiple Noisy Annotators

Supervised deep learning depends on massive accurately annotated example...

Hard Sample Aware Noise Robust Learning for Histopathology Image Classification

Deep learning-based histopathology image classification is a key techniq...

Deep Self-Learning From Noisy Labels

ConvNets achieve good results when training from clean data, but learnin...

ProMix: Combating Label Noise via Maximizing Clean Sample Utility

The ability to train deep neural networks under label noise is appealing...

Dual Adversarial Network: Toward Real-world Noise Removal and Noise Generation

Real-world image noise removal is a long-standing yet very challenging t...

Cooperative Learning for Noisy Supervision

Learning with noisy labels has gained the enormous interest in the robus...

Causal Attention for Vision-Language Tasks

We present a novel attention mechanism: Causal Attention (CATT), to remo...