Supervised Neural Networks for RFI Flagging

07/29/2020
by   Kyle Harrison, et al.
0

Neural network (NN) based methods are applied to the detection of radio frequency interference (RFI) in post-correlation,post-calibration time/frequency data. While calibration doesaffect RFI for the sake of this work a reduced dataset inpost-calibration is used. Two machine learning approachesfor flagging real measurement data are demonstrated usingthe existing RFI flagging technique AOFlagger as a groundtruth. It is shown that a single layer fully connects networkcan be trained using each time/frequency sample individuallywith the magnitude and phase of each polarization and Stokesvisibilities as features. This method was able to predict aBoolean flag map for each baseline to a high degree of accuracy achieving a Recall of 0.69 and Precision of 0.83 and anF1-Score of 0.75.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset