Supervised Hebbian learning: toward eXplainable AI
In neural network's Literature, Hebbian learning traditionally refers to the procedure by which the Hopfield model and its generalizations store archetypes (i.e., definite patterns that are experienced just once to form the synaptic matrix). However, the term learning in Machine Learning refers to the ability of the machine to extract features from the supplied dataset (e.g., made of blurred examples of these archetypes), in order to make its own representation of the unavailable archetypes. Here we prove that, if we feed the Hopfield model with blurred examples, we can define both supervised and unsupervised learning protocols by which the network can possibly infer the archetypes and we detect the correct control parameters (including the dataset size and its quality) to depict a phase diagram for the system performance. We also prove that, for random, structureless datasets, the Hopfield model equipped with a supervised learning rule is equivalent to a restricted Boltzmann machine and this suggests an optimal training routine; the robustness of results is also checked numerically for structured datasets. This work contributes to pave a solid way toward eXplainable AI (XAI).
READ FULL TEXT