Super-resolving 2D stress tensor field conserving equilibrium constraints using physics informed U-Net

06/02/2022
by   Kazuo Yonekura, et al.
0

In a finite element analysis, using a large number of grids is important to obtain accurate results, but is a resource-consuming task. Aiming to real-time simulation and optimization, it is desired to obtain fine grid analysis results within a limited resource. This paper proposes a super-resolution method that predicts a stress tensor field in a high-resolution from low-resolution contour plots by utilizing a U-Net-based neural network which is called PI-UNet. In addition, the proposed model minimizes the residual of the equilibrium constraints so that it outputs a physically reasonable solution. The proposed network is trained with FEM results of simple shapes, and is validated with a complicated realistic shape to evaluate generalization capability. Although ESRGAN is a standard model for image super-resolution, the proposed U-Net based model outperforms ESRGAN model in the stress tensor prediction task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro