DeepAI AI Chat
Log In Sign Up

Super-resolution of multispectral satellite images using convolutional neural networks

by   M. U. Müller, et al.

Super-resolution aims at increasing image resolution by algorithmic means and has progressed over the recent years due to advances in the fields of computer vision and deep learning. Convolutional Neural Networks based on a variety of architectures have been applied to the problem, e.g. autoencoders and residual networks. While most research focuses on the processing of photographs consisting only of RGB color channels, little work can be found concentrating on multi-band, analytic satellite imagery. Satellite images often include a panchromatic band, which has higher spatial resolution but lower spectral resolution than the other bands. In the field of remote sensing, there is a long tradition of applying pan-sharpening to satellite images, i.e. bringing the multispectral bands to the higher spatial resolution by merging them with the panchromatic band. To our knowledge there are so far no approaches to super-resolution which take advantage of the panchromatic band. In this paper we propose a method to train state-of-the-art CNNs using pairs of lower-resolution multispectral and high-resolution pan-sharpened image tiles in order to create super-resolved analytic images. The derived quality metrics show that the method improves information content of the processed images. We compare the results created by four CNN architectures, with RedNet30 performing best.


page 4

page 6

page 7


Multi-image Super Resolution of Remotely Sensed Images using Residual Feature Attention Deep Neural Networks

Convolutional Neural Networks (CNNs) have been consistently proved state...

Optimal Use of Multi-spectral Satellite Data with Convolutional Neural Networks

The analysis of satellite imagery will prove a crucial tool in the pursu...

Super-resolving multiresolution images with band-independant geometry of multispectral pixels

A new resolution enhancement method is presented for multispectral and m...

An Inter- and Intra-Band Loss for Pansharpening Convolutional Neural Networks

Pansharpening aims to fuse panchromatic and multispectral images from th...

A CNN-Based Super-Resolution Technique for Active Fire Detection on Sentinel-2 Data

Remote Sensing applications can benefit from a relatively fine spatial r...

A New Pseudo-color Technique Based on Intensity Information Protection for Passive Sensor Imagery

Remote sensing image processing is so important in geo-sciences. Images ...