Super-resolution MRI Using Finite Rate of Innovation Curves

01/08/2015
by   Greg Ongie, et al.
0

We propose a two-stage algorithm for the super-resolution of MR images from their low-frequency k-space samples. In the first stage we estimate a resolution-independent mask whose zeros represent the edges of the image. This builds off recent work extending the theory of sampling signals of finite rate of innovation (FRI) to two-dimensional curves. We enable its application to MRI by proposing extensions of the signal models allowed by FRI theory, and by developing a more robust and efficient means to determine the edge mask. In the second stage of the scheme, we recover the super-resolved MR image using the discretized edge mask as an image prior. We evaluate our scheme on simulated single-coil MR data obtained from analytical phantoms, and compare against total variation reconstructions. Our experiments show improved performance in both noiseless and noisy settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset