Super-Resolution DOA Estimation for Arbitrary Array Geometries Using a Single Noisy Snapshot

03/22/2019
by   A. Govinda Raj, et al.
0

We address the problem of search-free DOA estimation from a single noisy snapshot for sensor arrays of arbitrary geometry, by extending a method of gridless super-resolution beamforming to arbitrary arrays with noisy measurements. The primal atomic norm minimization problem is converted to a dual problem in which the periodic dual function is represented with a trigonometric polynomial using truncated Fourier series. The number of terms required for accurate representation depends linearly on the distance of the farthest sensor from a reference. The dual problem is then expressed as a semidefinite program and solved in polynomial time. DOA estimates are obtained via polynomial rooting followed by a LASSO based approach to remove extraneous roots arising in root finding from noisy data, and then source amplitudes are recovered by least squares. Simulations using circular and random planar arrays show high resolution DOA estimation in white and colored noise scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro