SummaryNet: A Multi-Stage Deep Learning Model for Automatic Video Summarisation

02/19/2020
by   Ziyad Jappie, et al.
0

Video summarisation can be posed as the task of extracting important parts of a video in order to create an informative summary of what occurred in the video. In this paper we introduce SummaryNet as a supervised learning framework for automated video summarisation. SummaryNet employs a two-stream convolutional network to learn spatial (appearance) and temporal (motion) representations. It utilizes an encoder-decoder model to extract the most salient features from the learned video representations. Lastly, it uses a sigmoid regression network with bidirectional long short-term memory cells to predict the probability of a frame being a summary frame. Experimental results on benchmark datasets show that the proposed method achieves comparable or significantly better results than the state-of-the-art video summarisation methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro