Sum-of-Squares meets Nash: Optimal Lower Bounds for Finding any Equilibrium

06/25/2018
by   Pravesh K. Kothari, et al.
0

Several works have shown unconditional hardness (via integrality gaps) of computing equilibria using strong hierarchies of convex relaxations. Such results however only apply to the problem of computing equilibria that optimize a certain objective function and not to the (arguably more fundamental) task of finding any equilibrium. We present an algorithmic model based on the sum-of-squares (SoS) hierarchy that allows escaping this inherent limitation of integrality gaps. In this model, algorithms access the input game only through a relaxed solution to the natural SoS relaxation for computing equilibria. They can then adaptively construct a list of candidate solutions and invoke a verification oracle to check if any candidate on the list is a solution. This model captures most well-studied approximation algorithms such as those for Max-Cut, Sparsest Cut, and Unique-Games. The state-of-the-art algorithms for computing exact and approximate equilibria in two-player, n-strategy games are captured in this model and require that at least one of i) size ( running time) of the SoS relaxation or ii) the size of the list of candidates, be at least 2^Ω(n) and n^Ω((n)) respectively. Our main result shows a lower bound that matches these upper bound up to constant factors in the exponent. This can be interpreted as an unconditional confirmation, in our restricted algorithmic framework, of Rubinstein's recent conditional hardness Rub for computing approximate equilibria. Our proof strategy involves constructing a family of games that all share a common sum-of-squares solution but every (approximate) equilibrium of one game is far from every (approximate) equilibrium of any other game in the family.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
05/16/2018

Near-Optimal Communication Lower Bounds for Approximate Nash Equilibria

We prove an N^2-o(1) lower bound on the randomized communication complex...
research
07/21/2020

Smoothed Complexity of 2-player Nash Equilibria

We prove that computing a Nash equilibrium of a two-player (n × n) game ...
research
07/08/2021

Lower Bounds for the Query Complexity of Equilibria in Lipschitz Games

Nearly a decade ago, Azrieli and Shmaya introduced the class of λ-Lipsch...
research
02/06/2023

Offline Learning in Markov Games with General Function Approximation

We study offline multi-agent reinforcement learning (RL) in Markov games...
research
10/30/2018

An Improved Algorithm for Computing Approximate Equilibria in Weighted Congestion Games

We present a polynomial-time algorithm for computing d^d+o(d)-approximat...
research
06/09/2020

The Max k-Cut Game: On Stable Optimal Colorings

We study the max k-cut game on an undirected and unweighted graph in ord...
research
01/20/2019

On the Number of Bins in Equilibria for Signaling Games

We investigate the equilibrium behavior for the decentralized quadratic ...

Please sign up or login with your details

Forgot password? Click here to reset