Substance over Style: Document-Level Targeted Content Transfer

10/16/2020 ∙ by Allison Hegel, et al. ∙ 0

Existing language models excel at writing from scratch, but many real-world scenarios require rewriting an existing document to fit a set of constraints. Although sentence-level rewriting has been fairly well-studied, little work has addressed the challenge of rewriting an entire document coherently. In this work, we introduce the task of document-level targeted content transfer and address it in the recipe domain, with a recipe as the document and a dietary restriction (such as vegan or dairy-free) as the targeted constraint. We propose a novel model for this task based on the generative pre-trained language model (GPT-2) and train on a large number of roughly-aligned recipe pairs (https://github.com/microsoft/document-level-targeted-content-transfer). Both automatic and human evaluations show that our model out-performs existing methods by generating coherent and diverse rewrites that obey the constraint while remaining close to the original document. Finally, we analyze our model's rewrites to assess progress toward the goal of making language generation more attuned to constraints that are substantive rather than stylistic.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 17

page 18

page 19

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.