Sub-network Multi-objective Evolutionary Algorithm for Filter Pruning

10/22/2022
by   Xuhua Li, et al.
0

Filter pruning is a common method to achieve model compression and acceleration in deep neural networks (DNNs).Some research regarded filter pruning as a combinatorial optimization problem and thus used evolutionary algorithms (EA) to prune filters of DNNs. However, it is difficult to find a satisfactory compromise solution in a reasonable time due to the complexity of solution space searching. To solve this problem, we first formulate a multi-objective optimization problem based on a sub-network of the full model and propose a Sub-network Multiobjective Evolutionary Algorithm (SMOEA) for filter pruning. By progressively pruning the convolutional layers in groups, SMOEA can obtain a lightweight pruned result with better performance.Experiments on VGG-14 model for CIFAR-10 verify the effectiveness of the proposed SMOEA. Specifically, the accuracy of the pruned model with 16.56 popular filter pruning criteria.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset