Style-Transfer via Texture-Synthesis

09/10/2016
by   Michael Elad, et al.
0

Style-transfer is a process of migrating a style from a given image to the content of another, synthesizing a new image which is an artistic mixture of the two. Recent work on this problem adopting Convolutional Neural-networks (CNN) ignited a renewed interest in this field, due to the very impressive results obtained. There exists an alternative path towards handling the style-transfer task, via generalization of texture-synthesis algorithms. This approach has been proposed over the years, but its results are typically less impressive compared to the CNN ones. In this work we propose a novel style-transfer algorithm that extends the texture-synthesis work of Kwatra et. al. (2005), while aiming to get stylized images that get closer in quality to the CNN ones. We modify Kwatra's algorithm in several key ways in order to achieve the desired transfer, with emphasis on a consistent way for keeping the content intact in selected regions, while producing hallucinated and rich style in others. The results obtained are visually pleasing and diverse, shown to be competitive with the recent CNN style-transfer algorithms. The proposed algorithm is fast and flexible, being able to process any pair of content + style images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset