Study of Vision Transformers for Covid-19 Detection from Chest X-rays

07/17/2023
by   Sandeep Angara, et al.
0

The COVID-19 pandemic has led to a global health crisis, highlighting the need for rapid and accurate virus detection. This research paper examines transfer learning with vision transformers for COVID-19 detection, known for its excellent performance in image recognition tasks. We leverage the capability of Vision Transformers to capture global context and learn complex patterns from chest X-ray images. In this work, we explored the recent state-of-art transformer models to detect Covid-19 using CXR images such as vision transformer (ViT), Swin-transformer, Max vision transformer (MViT), and Pyramid Vision transformer (PVT). Through the utilization of transfer learning with IMAGENET weights, the models achieved an impressive accuracy range of 98.75 state-of-the-art performance in COVID-19 detection, outperforming traditional methods and even Convolutional Neural Networks (CNNs). The results highlight the potential of Vision Transformers as a powerful tool for COVID-19 detection, with implications for improving the efficiency and accuracy of screening and diagnosis in clinical settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro