Structured Output Learning with Conditional Generative Flows

05/30/2019
by   You Lu, et al.
0

Traditional structured prediction models try to learn the conditional likelihood, i.e., p(y|x), to capture the relationship between the structured output y and the input features x. For many models, computing the likelihood is intractable. These models are therefore hard to train, requiring the use of surrogate objectives or variational inference to approximate likelihood. In this paper, we propose conditional Glow (c-Glow), a conditional generative flow for structured output learning. C-Glow benefits from the ability of flow-based models to compute p(y|x) exactly and efficiently. Learning with c-Glow does not require a surrogate objective or performing inference during training. Once trained, we can directly and efficiently generate conditional samples to do structured prediction. We evaluate this approach on different structured prediction tasks and find c-Glow's structured outputs comparable in quality with state-of-the-art deep structured prediction approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset