Structured Memory for Neural Turing Machines

10/14/2015
by   Wei Zhang, et al.
0

Neural Turing Machines (NTM) contain memory component that simulates "working memory" in the brain to store and retrieve information to ease simple algorithms learning. So far, only linearly organized memory is proposed, and during experiments, we observed that the model does not always converge, and overfits easily when handling certain tasks. We think memory component is key to some faulty behaviors of NTM, and better organization of memory component could help fight those problems. In this paper, we propose several different structures of memory for NTM, and we proved in experiments that two of our proposed structured-memory NTMs could lead to better convergence, in term of speed and prediction accuracy on copy task and associative recall task as in (Graves et al. 2014).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro