Structure-preserving diagonalization of matrices in indefinite inner product spaces
In this work some results on the structure-preserving diagonalization of selfadjoint and skewadjoint matrices in indefinite inner product spaces are presented. In particular, necessary and sufficient conditions on the symplectic diagonalizability of (skew)-Hamiltonian matrices and the perplectic diagonalizability of per(skew)-Hermitian matrices are provided. Assuming the structured matrix at hand is additionally normal, it is shown that any symplectic or perplectic diagonalization can always be constructed to be unitary. As a consequence of this fact, the existence of a unitary, structure-preserving diagonalization is equivalent to the existence of a specially structured additive decomposition of such matrices. The implications of this decomposition are illustrated by several examples.
READ FULL TEXT