DeepAI AI Chat
Log In Sign Up

Structure-Preserving Community In A Multilayer Network: Definition, Detection, And Analysis

by   Abhishek Santra, et al.

Multilayer networks or MLNs (also called multiplexes or network of networks) are being used extensively for modeling and analysis of data sets with multiple entity and feature types as well as their relationships. As the concept of communities and hubs are used for these analysis, a structure-preserving definition for them on MLNs (that retains the original MLN structure and node/edge labels and types) and its efficient detection are critical. There is no structure-preserving definition of a community for a MLN as most of the current analyses aggregate a MLN to a single graph. Although there is consensus on community definition for single graphs (and detection packages) and to a lesser extent for homogeneous MLNs, it is lacking for heterogeneous MLNs. In this paper, we not only provide a structure-preserving definition for the first time, but also its efficient computation using a decoupling approach, and discuss its characteristics & significance for analysis. The proposed decoupling approach for efficiency combines communities from individual layers to form a serial k-community for connected k layers in a MLN. We propose several weight metrics for composing layer-wise communities using the bipartite graph match approach based on the analysis semantics. Our proposed approach has a number of advantages. It: i) leverages extant single graph community detection algorithms, ii) is based on the widely-used maximal flow bipartite graph matching for composing k layers, iii) introduces several weight metrics that are customized for the community concept, and iv) experimentally validates the definition, mapping, and efficiency from a flexible analysis perspective on widely-used IMDb data set. Keywords: Heterogeneous Multilayer Networks; Bipartite Graphs; Community Definition and Detection; Decoupling-Based Composition


Network Abstractions of Prescription Patterns in a Medicaid Population

Understanding prescription patterns have relied largely on aggregate sta...

A New Community Definition For MultiLayer Networks And A Novel Approach For Its Efficient Computation

As the use of MultiLayer Networks (or MLNs) for modeling and analysis is...

Multilayer Clustered Graph Learning

Multilayer graphs are appealing mathematical tools for modeling multiple...

Making a Case for MLNs for Data-Driven Analysis: Modeling, Efficiency, and Versatility

Datasets of real-world applications are characterized by entities of dif...

From Base Data To Knowledge Discovery – A Life Cycle Approach – Using Multilayer Networks

Any large complex data analysis to infer or discover meaningful informat...

Degree Centrality Algorithms For Homogeneous Multilayer Networks

Centrality measures for simple graphs/networks are well-defined and each...