Structural Similarity and Distance in Learning
We propose a novel method of introducing structure into existing machine learning techniques by developing structure-based similarity and distance measures. To learn structural information, low-dimensional structure of the data is captured by solving a non-linear, low-rank representation problem. We show that this low-rank representation can be kernelized, has a closed-form solution, allows for separation of independent manifolds, and is robust to noise. From this representation, similarity between observations based on non-linear structure is computed and can be incorporated into existing feature transformations, dimensionality reduction techniques, and machine learning methods. Experimental results on both synthetic and real data sets show performance improvements for clustering, and anomaly detection through the use of structural similarity.
READ FULL TEXT