Strong Revenue (Non-)Monotonicity of Single-parameter Auctions
Consider Myerson's optimal auction with respect to an inaccurate prior, e.g., estimated from data, which is an underestimation of the true value distribution. Can the auctioneer expect getting at least the optimal revenue w.r.t. the inaccurate prior since the true value distribution is bigger? This so-called strong revenue monotonicity is known to be true for single-parameter auctions when the feasible allocations form a matroid. We find that strong revenue monotonicity fails to generalize beyond the matroid setting, and further show that auctions in the matroid setting are the only downward-closed auctions that satisfy strong revenue monotonicity. On the flip side, we recover an approximate version of strong revenue monotonicity that holds for all single-parameter auctions, even without downward-closeness. As applications, we improve the sample complexity upper bounds for various single-parameter auctions.
READ FULL TEXT