Strong Coordination over Noisy Channels
We study the problem of strong coordination of the actions of two nodes X and Y that communicate over a discrete memoryless channel (DMC) such that the actions follow a prescribed joint probability distribution. We propose two novel random coding schemes and a polar coding scheme for this noisy strong coordination problem, and derive inner bounds for the respective strong coordination capacity region. The first scheme is a joint coordination-channel coding scheme that utilizes the randomness provided by the DMC to reduce the amount of local randomness required to generate the sequence of actions at Node Y. Based on this random coding scheme, we provide a characterization of the capacity region for two special cases of the noisy strong coordination setup, namely, when the actions at Node Y are determined by Node X and when the DMC is a deterministic channel. The second scheme exploits separate coordination and channel coding where local randomness is extracted from the channel after decoding. The third scheme is a joint coordination-channel polar coding scheme for strong coordination. We show that polar codes are able to achieve the established inner bound to the noisy strong coordination capacity region and thus provide a constructive alternative to a random coding proof. Our polar coding scheme also offers a constructive solution to a channel simulation problem where a DMC and shared randomness are employed together to simulate another DMC. Finally, by leveraging the random coding results for this problem, we present an example in which the proposed joint scheme is able to strictly outperform the separate scheme in terms of achievable communication rate for the same amount of injected randomness into both systems. Thus, we establish the sub-optimality of the separation of strong coordination and channel coding with respect to the communication rate over the DMC.
READ FULL TEXT